Engineering, Sustainability, and Innovation: Key Pillars for Meeting European Taxonomy Standards

European Union flags waving in Brussels.

“The transition to a low-carbon economy requires a fundamental transformation in the way businesses operate, and the EU Taxonomy is essential for guiding and supporting this transformation.” – European Investment Bank (EIB)

Energy transition is at the heart of European policies, with the clear aim of reducing greenhouse gas emissions and promoting sustainability through activities aligned with the European Union’s environmental objectives. However, the generator sector, often perceived as having a significant environmental impact due to the use of fossil fuels, has been excluded from the European Taxonomy for sustainable economic activities. This situation has sparked a debate about the role that power generators can play in the energy transition.

In this article, we explore how the generator sector, particularly emergency generators, cannot only meet the expectations of the European Taxonomy but also lead the way in the energy transition towards a more efficient and environmentally friendly industry.

Let’s Start from the Beginning: What is the European Taxonomy?

The European Taxonomy is a classification system designed to help identify and guide investments towards environmentally sustainable economic activities. This classification enables investors, businesses, and policy makers to make informed decisions about which activities can contribute to the EU’s climate and sustainability goals, aligning with the European Green Deal.

Taxonomy establishes a set of key pillars that define what qualifies as a sustainable economic activity and the criteria that must be met for an activity to be considered aligned with the EU’s environmental targets.

These pillars, essential for ensuring that investments flow into sectors that genuinely contribute to a greener and more sustainable future, are as follows:

  • Climate Change Mitigation: This principle advocates for the development of activities that help to reduce greenhouse gas (GHG) emissions, which are responsible for global warming. Activities that contribute to climate change mitigation include the adoption and expansion of renewable energy sources and those that enhance energy efficiency in buildings, industry, and transport.
    Additionally, mitigation involves transitioning to sustainable mobility models, such as electric vehicles, and promoting agricultural and land-use practices that sequester carbon instead of releasing it, such as regenerative agriculture or reforestation.
  • Climate Change Adaptation: This refers to activities that increase the resilience of natural and human systems to the impacts of climate change. It is one of the most crucial pillars, especially given that the effects of climate change are already evident and will continue to intensify in the coming decades.
    Adaptation activities include improving urban infrastructure to make it more resistant to extreme weather events such as floods or heatwaves. Also included in this category are initiatives that promote sustainable water management and the adaptation of agriculture to new climatic conditions, with drought-resistant crops or more efficient irrigation techniques.
  • Protection and Restoration of Ecosystems and Biodiversity: The loss of biodiversity and the degradation of natural ecosystems are among the most severe consequences of climate change. For this reason, the Taxonomy encourages activities that help preserve existing ecosystems and restore damaged ones, contributing to the long-term sustainability of life on Earth.
    This includes reforestation projects, the creation of protected areas to conserve natural habitats and endangered species, as well as sustainable agricultural practices that protect soils and water bodies. Furthermore, the protection of marine ecosystems and the restoration of aquatic habitats are also essential for maintaining biodiversity and ecosystem services such as water purification and climate regulation.
  • Circular Economy: This pillar promotes activities aimed at minimising waste and maximising the reuse of resources, such as recycling, material reuse, and the design of products that are easily recyclable or require fewer resources for production.
    However, the circular economy is not only about waste reduction—it is also linked to reducing the extraction of natural resources by promoting the recovery of materials from discarded products, thereby reducing pressure on ecosystems and minimising the carbon footprint.

Wind farm at sunset, symbolizing the energy transition and sustainability in line with European Taxonomy standards.

For an activity to be considered aligned with the European Taxonomy, it must meet a set of specific technical criteria that significantly contribute to the objectives mentioned. These criteria focus not only on activities that generate a direct positive environmental impact but also on the principle of “Do No Significant Harm” (DNSH) to other objectives. This means that, in addition to positively contributing to one of the pillars, an activity must not harm other sustainability aspects, such as biodiversity or human health.

This comprehensive approach ensures that investments and activities aligned with the Taxonomy are not only environmentally responsible but also promote sustainable economic development that is socially inclusive and does not cause long-term damage to natural resources.

Why Should This Not Be the Case? The Crucial Role of Power Generators

The exclusion of the generator sector from the eligible activities under the Taxonomy could overlook the fundamental role these machines play in the energy transition. Emergency generators are essential for ensuring the security and reliability of electricity supply. As the integration of renewable energy sources into the power grid increases, so does the need to secure a stable and reliable energy supply. Renewable energy sources such as solar and wind are inherently variable, which can lead to fluctuations in electricity generation.

In this context, emergency generators act as a safeguard for the power grid, rapidly compensating for any drop in generation and maintaining grid stability.

Furthermore, technological advancements have made it possible to design emergency generators that use sustainable fuels, such as HVO (hydrotreated vegetable oil), and emission reduction technologies. Solutions such as gas post-treatment systems, including diesel particulate filters (DPF), selective catalytic reduction (SCR), and urea injection, enable generators to operate with a significantly lower carbon footprint, aligning with the EU’s sustainability goals and contributing to the transition to a low-carbon economy. Additionally, the limited use of these generators—typically operating only a few hours per year—minimises their environmental impact, as their emissions are negligible compared to continuous energy generation sources.

Moreover, new innovations enable generators to be more fuel-efficient and minimise emissions. The adoption of technologies such as thermal insulation systems enhances not only safety but also the operational efficiency of these generators. This makes emergency generators an integral part of sustainable infrastructure, ensuring grid stability while supporting the integration of renewable energy and providing reliable backup power when it is most needed.

A Case Study from Genesal Energy

At Genesal Energy, we have developed several projects that serve as clear examples of how the generator sector can adapt to the sustainability standards imposed by the European Taxonomy. Recently, we carried out a project that demonstrates that, through engineering, it is possible to integrate solutions into these machines that reduce their environmental impact without compromising their reliability and efficiency.
Workers manufacturing and inspecting a generator set, with a detailed view of its engine.

A key aspect of this project was compliance with highly stringent emissions regulations in Belgium. To achieve this, advanced gas post-treatment systems were incorporated, including diesel particulate filters (DPF) and selective catalytic reduction (SCR) with urea injection. These technologies minimise pollutant emissions to the maximum, aligning with the most demanding environmental standards.

Additionally, the generator design included solutions that optimise energy efficiency and ensure safety in harsh environments. Custom load steps were implemented to improve energy consumption, and fuel heaters were added to ensure operability in low temperatures with ATEX (Explosive Atmosphere) certification for maximum safety. Leak detection systems and liquid collection trays were also installed, reinforcing environmental protection.

<blockquote class=”bq-border”>To ensure efficient and safe operation, the project incorporated an independent electrical room equipped with a remote control panel, allowing remote management of the generators.</blockquote>

Medium-voltage grounding resistors and a medium-voltage switchgear with automatic circuit breakers were also added to integrate with the plant’s installation requirements.

Finally, special attention was given to reducing acoustic impact, incorporating soundproofing solutions to keep noise levels below 80 dB at 1m under normal operating conditions, significantly reducing noise emissions. Motorised grilles were also included to isolate the generators from the environment during inactivity periods, optimising efficiency and extending their lifespan.

This case demonstrates that, thanks to new technological solutions, sustainability can be a fundamental aspect of the generator sector, enabling compliance with the strictest European Taxonomy and environmental regulations while contributing to the transition to a cleaner and more efficient energy model.

 

Genesal Energy designs customised solutions key to industrial productivity for a chemical plant

Genesal Energy knows that energy is the engine that drives industry, and we work to ensure that it never stops.

We believe that it is essential to design generating sets that provide solutions for different industrial sectors.

To guarantee operational continuity, energy security and the capacity to respond to any type of contingency, it is essential to have equipment that guarantees a constant supply of energy. We have designed and supplied a customised generator set for a chemical plant located in the Sabón Industrial Estate, Northern Spain, reinforcing its capacity to guarantee production and maintain its competitive advantage in a demanding market.

This chemical plant operates during all three shifts, making constant power availability a critical factor. Our engineering team designed a generator set that can work in parallel with the power grid, minimising the impact of possible power failures and eliminating the risk of the dreaded ‘zero-crossing’, which could stop the machines and cause time and productivity losses.

Considering that this factory is located in a marine environment, the equipment was designed with specific features to guarantee its durability and optimum performance, with a soundproofed canopy, a 700-litre tank for greater autonomy and C5M paint surface treatment in accordance with ISO12944 standards.

A marinised alternator has been also included, specially prepared for high salinity conditions, to which an advanced ComAp InteliGen4 200 control panel has been added, designed to manage operations in parallel with the grid.

A key service for competitiveness in the industrial sector

In a market where efficiency and operational continuity are crucial, having a backup generator set not only protects production processes, but is also a differentiating factor that ensures business competitiveness.

Power outages not only affect immediate production but can also compromise the ability to meet delivery deadlines, impact product quality and ultimately customer satisfaction.

Our engineering solution

A unit was designed that, firstly, could fulfil the function of working in parallel with the grid to guarantee the minimum downtime impact in the event of a failure of the factory’s main supply. Then the parts of this equipment were manufactured with a special surface treatment as it was exposed to a marine environment (marinised canopy and alternator).

Features

  • Supply: 3900mm Soundproofed Canopy.
  • Tank: 700L base frame integrated.
  • Control panel: ComAp InteliGen4 200 for parallel operation.
  • Surface paint treatment according to ISO12944 – C5M.
  • Marinised alternator.
  • Motorised Circuit Breaker.

Genesal Energy ensures operational continuity at a thermal power plant in Dominican Republic

In the current context, where energy transition and sustainability are global priorities, thermoelectric power plants continue to play a fundamental role in the electricity supply.

These facilities not only guarantee a secure energy source, but also, by incorporating advanced technologies such as the combined cycle, they achieve greater energy efficiency and reduce environmental impact.

Within this framework, Genesal Energy has designed and manufactured a generator set for a Combined Cycle Thermal Power Plant located in San Pedro de Macorís, Dominican Republic, intended to work with an already operational set and reinforce the electricity supply to a key region for the country.

With more than 10 million inhabitants, the Dominican Republic is experiencing a steady growth in energy demand, driven by industrial development, tourism and urbanisation. Thermal power plants, such as the one in San Pedro de Macorís, play an essential role in ensuring the stability of the electricity system and complementing renewable generation.

Backup power for essential systems

The main purpose of the diesel generator set supplied is to act as a contingency system. In the event of failures in the general power grid, voltage variations or scheduled maintenance shutdowns, the equipment guarantees the supply to the plant’s key systems, maintaining the operability of the equipment and the continuity of the electrical service until the grid is re-established.

To meet these demands, our engineering team developed a customised solution, which included:

  • Design and manufacture of a generator set in a 40ft HC container, with engine-alternator coupled directly on a steel base frame.
  • 1,500 litres fuel tank providing more than 4 hours of autonomy at full load.
  • 2x MSR250 (-30dB) Type A technology silencers, which considerably reduce noise emission.
  • CompAp InteliGen control panel for advanced equipment management.
  • Additional safety measures, such as anti-fire system, protections on moving and hot parts, and emergency stop mushrooms.

Combined cycle power plants make efficient use of resources, combining gas and steam turbines to maximise power generation and reduce emissions, guaranteeing the sustainable economic development of the region. Genesal Energy reaffirms its commitment to sustainability, energy efficiency and social progress.

Features

  • Supply: Monoblock engine-alternator in 40′ High Cube container.
  • Tank: 1,500L steel-steel tank, double walled.
  • Silenvcer: 2x MSR250 (-30dB) TYPE A
  • Control panel: CompAp InteliGen

 

Most Common Failures in Generator Sets

Technician performing maintenance on a generator set to prevent failures and ensure proper operation.
Generator sets are essential tools for energy supply in various situations. However, they can experience failures that affect their performance and reliability. It is crucial to understand the main causes of these failures and how to prevent them.

Proper maintenance can extend the lifespan of the generator set and ensure its proper operation.

Main Causes of Failures in Generator Sets

Generator sets can suffer from various failures, primarily due to a lack of maintenance or improper use. Below are the most common causes that can affect their performance.

Fuel Issues

One of the most frequent problems is related to fuel. Running out of fuel or using the wrong type can prevent the generator from starting. Some common causes include:

  • Lack of fuel: The generator will not function if the tank is empty.
  • Incorrect fuel type: Using an unsuitable fuel can damage the engine.

Battery Failures

The battery is essential for starting the generator set. Its failures can be caused by:

  • Loose connections: Poorly connected cables can prevent startup.
  • Discharged battery: Particularly problematic if the generator is not used frequently.
  • Sulfate accumulation: Can obstruct contacts and prevent proper operation.

Oil Leaks

Oil leaks affect both the efficiency and safety of the generator. If unchecked, they can lead to fires. Regular oil level inspections are essential to prevent this issue.

Diagnosis and repair of a generator set failure, including temperature measurement and electrical adjustment.

Switches and Fuses

These components are crucial for the protection of the generator set. Failures can result in unexpected shutdowns. Regular maintenance and timely replacement of damaged fuses or switches are vital.

Insufficient Energy Production

A lack of power output can have several causes, such as:

  • Overload: Connecting too many devices can exceed the generator’s capacity.
  • Connection system issues: Checking cables and connections is essential for proper operation.

Air Leaks in the Fuel System

Air infiltration into the fuel system is a common issue when the generator remains inactive for extended periods. It leads to difficulties in starting. Proper system maintenance can prevent this situation.

Technician performing maintenance on an industrial generator set.

Electrical Panel Failures

The electrical panel can experience failures due to prolonged use or vibrations. Generally, replacing the faulty component is required to restore its function.

Exhaust System Issues

The exhaust system must function correctly to prevent combustion gases from entering the generator’s housing.

Regular checks of silencers and joints are vital to ensuring safe generator operation.

Maintenance and Failure Prevention

Technician adjusting connections in the electrical system of a generator set.

Recommendations for Regular Maintenance

Preventive maintenance should include scheduled activities to ensure the generator operates correctly. Key recommendations include:

  • Regular oil changes and replacement of air and fuel filters.
  • Scheduled inspections to detect and resolve issues before they become major failures.
  • Cleaning components to remove dirt and debris that could affect performance.

How to Prevent Overheating

Overheating can cause severe engine damage. Implementing preventive measures is essential.

  • Importance of the Air Filter: A clean air filter allows the proper airflow to the engine, which is essential for efficient combustion and preventing overheating. Regularly inspecting and replacing the air filter is recommended.
  • Checking the Coolant Level: Maintaining the correct coolant level in the cooling system prevents overheating. Inspecting the system for leaks or decreasing fluid levels is crucial.

Strategies to Prevent Damage

Taking precautions to protect the generator can prevent severe long-term damage. The following strategies are recommended:

  • Protecting the Generator from Moisture: It is essential to keep the generator in a dry environment. Moisture can cause corrosion and electrical failures. Using appropriate covers and keeping the storage area clean and dry is crucial.
  • Avoiding Generator Overload: Overloading the generator beyond its designated capacity can damage internal components. Understanding the generator’s rated power and controlling the number of connected devices is essential.

Technical Aspects and Professional Consultancy

Proper generator set operation requires not only good maintenance but also the evaluation of fundamental technical aspects.

Professional consultancy ensures that generators operate under optimal conditions and that technical issues are efficiently resolved.

When to Consult a Technician

It is essential to know when to seek professional assistance to ensure the generator’s performance. Key situations include:

  • Recurring failures: If the generator frequently experiences issues, a technician can diagnose the root cause.
  • Poor performance: If the generator is not producing the required energy, professional intervention is crucial.
  • Advanced maintenance: For inspections that require in-depth technical knowledge, hiring a specialist is advisable.

Genesal Energy technician inspecting a generator set.

Importance of a Properly Sized Generator Set

Choosing a well-sized and reliable generator set is fundamental to ensuring optimal performance. A high-quality generator offers significant advantages, including:

  • Greater durability: Recognised brands manufacture generators with high-quality materials, making them more resistant.
  • Lower maintenance costs: A good generator includes high-quality components that reduce the risk of failures and repair costs.
  • Better performance: These units are generally more efficient in power production, leading to lower fuel consumption.

How to Extend the Generator’s Lifespan

Proper maintenance and handling of the generator are essential to prolong its lifespan. Several strategies can be adopted, including:

  • Scheduling regular maintenance: Regular inspections help identify problems before they become major failures.
  • Using quality fuel: Suitable fuel improves engine performance and reduces internal component wear.
  • Controlling the operating environment: Keeping the generator in a dry and well-ventilated location enhances its longevity and reduces the risk of corrosion.

Electric Generator vs Genset: Key Differences

Genesal Energy technician inspecting and adjusting the control panel of an industrial generator set.

What is the difference between an electric generator and a generator set? Both devices have the same objective: to provide electrical power. This is why the two concepts are often confused.

Technically, an electric generator is a component designed to convert mechanical energy (motion) into electrical energy. In contrast, a generator set is a complete system that integrates an electric generator and an internal combustion engine, allowing it to function autonomously.

Defining the Concepts

Understanding the fundamental concepts of electric generators and generator sets is essential for correctly using both terms.

Electric Generator

An electric generator is a device that transforms mechanical energy into electrical energy. This transformation occurs through a rotating system where a rotor generates a magnetic field that induces a current in the stator.

Electric generators are commonly used in power plants to generate electricity that can be stored and consumed later. They require an external power source, such as diesel engines (which would form a generator set) or steam turbines, to provide the necessary mechanical energy.

Power generation plant with cooling towers and electrical transmission lines.

Generator set

A generator set combines an internal combustion engine with an electric generator (also known as an alternator) in a single unit. This equipment is self-sufficient and designed to generate electricity in emergency situations or locations without access to the electrical grid.

When activated, the engine burns fuel to produce mechanical energy, which the alternator then converts into electrical power, ensuring an immediate and reliable energy supply.

Why Is There Confusion Between the Terms?

In everyday use, many people think of an electric generator as a compact unit, such as portable models used in homes or small businesses during power outages. These devices, typically with a capacity of up to 10 kVA, are accessible and practical, ideal for powering household appliances or basic tools.

However, this concept is incorrect. These small units are not just electric generators but small generator sets, as they integrate both an internal combustion engine and an electric generator in a single self-contained unit.

On the other hand, the term generator set is often associated with large industrial electric generators, like those manufactured by Genesal Energy. These units are designed for large-scale projects, with power outputs ranging from 10 kVA to several MVA, and are essential in industrial, healthcare, energy, and critical infrastructure sectors.

This misuse of terminology can lead to confusion when selecting the right equipment or understanding how it functions.

Genesal Energy facilities, with units in the assembly and testing process.

How to Choose the Right Equipment

The choice between an electric generator (or rather, a small generator set) and an industrial generator set depends on the intended use:

  • Small domestic or commercial applications: Low-power portable units (up to 10 kVA) are usually the best option. Although they are commonly called electric generators, they are technically compact generator sets.
  • Industrial or large-scale applications: In these cases, it is necessary to opt for industrial generator sets with higher power capacities, capable of ensuring a continuous and reliable power supply, like those in our catalogue.

Although “electric generator” and “generator set” are often used interchangeably in everyday language, it is important to understand their technical differences and applications.

In essence, every generator set contains an electric generator, but not all electric generators are complete generator sets.

Additive manufacturing
and the road
to sustainability

Sustainability has become a priority in all industrial sectors. The need to balance economic growth with environmental preservation is driving the search for innovative technologies to reduce environmental impact at all stages of the industrial process – including product manufacturing.

In this context, additive manufacturing is emerging as an innovative and effective solution for its potential to reduce the amount of raw materials required and waste generated, to the extent that it is already considered one of the fundamental pillars of 4.0 Industry.

What exactly is additive manufacturing?

Traditionally, products are made by removing material from a solid block through various processes, such as cutting, drilling or enamelling. In contrast to this process of ‘subtractive manufacturing’ is ‘additive manufacturing’, where the production of goods is done through the aggregation of material coatings. This addition is done layer by layer until the shape previously defined in a digital model is achieved, so that only the exact amount of material needed to create the part is used.
Engineers working on 3D component design, applying additive manufacturing technology.

Fundamental principles
of additive manufacturing

The starting point for any additive manufacturing piece of work is the digital design of the part. Three-dimensional models are translated into two-dimensional layers that can be built up successively using a 3D printer. The materials used vary widely and include plastics, metals, ceramics, composites and even biomaterials.

The main current additive
manufacturing technologies are:

  •  Fused deposition modelling (FDM): uses heated and extruded thermoplastic filaments to build the part layer by layer. It is one of the most accessible and common technologies, especially in domestic use and prototyping.
  • Selective Laser Sintering (SLS): Uses high-power lasers to fuse powder particles of material, such as plastic or metal, to form solid structures. It is ideal for complex and durable parts.
  • Steriolithography (SLA): Solidifies photosensitive liquid resins layer by layer using an ultraviolet laser. Produces parts with great detail and high quality surface finishes.
  • Direct Metal Laser Sintering (DMLS): Designed for metallic materials, this technology fuses metal powders using lasers. It is widely used in the aerospace and medical industries for its ability to create high-precision, high-strength parts.
  • Binder Jetting: Uses a binding agent to bind layers of powdered material together, which are then solidified by secondary processes such as sintering. It is an efficient technology for mass production of complex parts.

Sustainable industry focused on efficiency and the environment.

The impact of additive
manufacturing on sustainability

Reducing material waste

One of the most obvious benefits of additive manufacturing is the drastic reduction in material waste compared to the traditional subtractive process. For instance; when manufacturing metal components by milling, up to 90% of the raw material is wasted; whereas, with additive manufacturing, this waste can be almost non-existent. This advantage is particularly relevant in the manufacture of high-cost components, such as titanium in the aerospace industry.

Design optimisation and energy efficiency

The ability to manufacture complex geometries without great costs allows the design of optimised components that would not be feasible using traditional techniques. For example, lightweight lattice structures created through additive manufacturing offer an optimal weight-to-strength ratio, reducing energy consumption during the use of the final product.
3D prototyping lab and machining process in industrial manufacturing.
Furthermore, the weight reduction often achieved through additive manufacturing – either through the new designs allowed or through the use of a new material for the manufacture of components – can translate into substantial fuel savings in key sectors such as freight transport. This, in turn, means reducing CO₂ emissions and thus the impact on climate change.

Local and decentralised production

Another advantage of additive manufacturing is on-demand production close to the point of use. This decentralisation drastically reduces the need for transportation and warehousing, two of the main contributors to greenhouse gas emissions in traditional supply chains. In addition, the ability to manufacture parts on-site in remote areas reduces dependence on a complex logistics system.

Use of recycled materials

The development of more sustainable materials is driving the adoption of additive manufacturing in contexts such as eco-design. Bioplastics such as PLA (polylactic acid), derived from biological raw materials such as corn, represent viable alternatives to petroleum-based plastics.

Similarly, the use of recycled materials is also on the rise, allowing 3D printed products to contribute to the advancement of the circular economy.

Genesal Energy’s commitment
to additive manufacturing

Although Genesal Energy had already tested additive manufacturing in the context of the NextFactory project, it was not until 2024 that it took the final step towards integrating this technology into its industrial processes. As part of a project co-funded by the Regional Goverment, the company has acquired a state-of-the-art 3D printer with the aim of reducing the carbon footprint of its generator sets.

One of the first initiatives has been the application of this technology in the design of the company’s standard line of generator sets. After appropriate calculations and various modelling and material application tests, it has been demonstrated that the use of 3D printed components not only reduces material waste, but also optimises the performance of the equipment. The results have been so promising that we plan to expand the use of these techniques to the rest of the range in the future.

On top of the environmental benefits, this technology also opens up new possibilities for product customisation and the manufacture of complex parts that improve the operational efficiency of gensets. This reinforces Genesal Energy’s commitment to innovation and sustainability in the customised energy sector.

Project co-financed by the Xunta de Galicia.