Additive manufacturing
and the road
to sustainability
Sustainability has become a priority in all industrial sectors. The need to balance economic growth with environmental preservation is driving the search for innovative technologies to reduce environmental impact at all stages of the industrial process – including product manufacturing.
In this context, additive manufacturing is emerging as an innovative and effective solution for its potential to reduce the amount of raw materials required and waste generated, to the extent that it is already considered one of the fundamental pillars of 4.0 Industry.
What exactly is additive manufacturing?
Traditionally, products are made by removing material from a solid block through various processes, such as cutting, drilling or enamelling. In contrast to this process of ‘subtractive manufacturing’ is ‘additive manufacturing’, where the production of goods is done through the aggregation of material coatings. This addition is done layer by layer until the shape previously defined in a digital model is achieved, so that only the exact amount of material needed to create the part is used.
Fundamental principles
of additive manufacturing
The starting point for any additive manufacturing piece of work is the digital design of the part. Three-dimensional models are translated into two-dimensional layers that can be built up successively using a 3D printer. The materials used vary widely and include plastics, metals, ceramics, composites and even biomaterials.
The main current additive
manufacturing technologies are:
- Fused deposition modelling (FDM): uses heated and extruded thermoplastic filaments to build the part layer by layer. It is one of the most accessible and common technologies, especially in domestic use and prototyping.
- Selective Laser Sintering (SLS): Uses high-power lasers to fuse powder particles of material, such as plastic or metal, to form solid structures. It is ideal for complex and durable parts.
- Steriolithography (SLA): Solidifies photosensitive liquid resins layer by layer using an ultraviolet laser. Produces parts with great detail and high quality surface finishes.
- Direct Metal Laser Sintering (DMLS): Designed for metallic materials, this technology fuses metal powders using lasers. It is widely used in the aerospace and medical industries for its ability to create high-precision, high-strength parts.
- Binder Jetting: Uses a binding agent to bind layers of powdered material together, which are then solidified by secondary processes such as sintering. It is an efficient technology for mass production of complex parts.
The impact of additive
manufacturing on sustainability
Reducing material waste
One of the most obvious benefits of additive manufacturing is the drastic reduction in material waste compared to the traditional subtractive process. For instance; when manufacturing metal components by milling, up to 90% of the raw material is wasted; whereas, with additive manufacturing, this waste can be almost non-existent. This advantage is particularly relevant in the manufacture of high-cost components, such as titanium in the aerospace industry.
Design optimisation and energy efficiency
The ability to manufacture complex geometries without great costs allows the design of optimised components that would not be feasible using traditional techniques. For example, lightweight lattice structures created through additive manufacturing offer an optimal weight-to-strength ratio, reducing energy consumption during the use of the final product.
Furthermore, the weight reduction often achieved through additive manufacturing – either through the new designs allowed or through the use of a new material for the manufacture of components – can translate into substantial fuel savings in key sectors such as freight transport. This, in turn, means reducing CO₂ emissions and thus the impact on climate change.
Local and decentralised production
Another advantage of additive manufacturing is on-demand production close to the point of use. This decentralisation drastically reduces the need for transportation and warehousing, two of the main contributors to greenhouse gas emissions in traditional supply chains. In addition, the ability to manufacture parts on-site in remote areas reduces dependence on a complex logistics system.
Use of recycled materials
The development of more sustainable materials is driving the adoption of additive manufacturing in contexts such as eco-design. Bioplastics such as PLA (polylactic acid), derived from biological raw materials such as corn, represent viable alternatives to petroleum-based plastics.
Similarly, the use of recycled materials is also on the rise, allowing 3D printed products to contribute to the advancement of the circular economy.
Genesal Energy’s commitment
to additive manufacturing
Although Genesal Energy had already tested additive manufacturing in the context of the NextFactory project, it was not until 2024 that it took the final step towards integrating this technology into its industrial processes. As part of a project co-funded by the Regional Goverment, the company has acquired a state-of-the-art 3D printer with the aim of reducing the carbon footprint of its generator sets.
One of the first initiatives has been the application of this technology in the design of the company’s standard line of generator sets. After appropriate calculations and various modelling and material application tests, it has been demonstrated that the use of 3D printed components not only reduces material waste, but also optimises the performance of the equipment. The results have been so promising that we plan to expand the use of these techniques to the rest of the range in the future.
On top of the environmental benefits, this technology also opens up new possibilities for product customisation and the manufacture of complex parts that improve the operational efficiency of gensets. This reinforces Genesal Energy’s commitment to innovation and sustainability in the customised energy sector.